Materials Science Electives


Print Friendly, PDF & Email

The following courses have been pre-approved as IMSE electives and are being offered for the Spring 2018 semester: 


Complete list of pre-approved IMSE PhD Electives

BME 461 Protein Structure and Dynamics|
This course covers the concepts and methods involved in the analysis of protein structure, stability, folding and misfolding. Topics include, protein structural elements, amyloid structure, intra- and intermolecular forces, folding pathways and intermediates, phi-value analysis, kinetics of protein folding and of amyloid formation, and their application to problems of bioengineering and biophysics. Two thirds of the course will consist of lectures, the other third will be student seminars, in which each student presents a paper from primary literature and its concept and methodology that is discussed in detail. Prerequisites: BME 320B Bioengineering Thermodynamics or equivalent.

BME 523 Biomaterials Science
An understanding of the interactions between biological systems and artificial materials is of vital importance in the design of medical devices. This course will introduce the principles of biomaterials science, unifying knowledge from the fields of biology, materials science, surface science, and colloid science.

Chem 426 Inorganic Electrochemistry and Photochemistry
An understanding of electrochemical processes is critical in describing the behavior of batteries, photovoltaics, solar fuel systems, and other important devices used in energy conversion and environmental remediation. This course will cover modern inorganic electrochemistry, photochemistry, and photoelectrochemistry from a microscopic perspective of solid-electrolyte interfaces. The course material will start with the thermodynamics of solid-electrolyte interfaces and the kinetics of electron transfer across these interfaces. Electroanalytical techniques, such as cyclic voltammetry and potential step methods, will be described to understand the mechanism of various electrochemical and photochemical reactions. The second half of the course will cover several applications of electrochemical cells, including batteries, fuel cells, and photoelectrochemical cells. Prerequisites: Chem 461 or Chem 465 or consent of instructor.

Chem 543 Physical Properties of Quantum Nanostructures
This course will explore the physical properties of semiconductor nanomaterials with dimensions that are small enough to give rise to quantum-confinement effects. These effects strongly influence the electronic structures, absorption/emission behavior, and charge-carrier dynamics within quantum wells, rods, wires, dots, and nanotubes. The course begins with an overview of the electronic structure of bulk semiconductors. The theoretical and experimental bases for quantum-confinement effects, which are of considerable fundamental and applied interest, will then be developed. A significant emphasis will be placed on the optical absorption and photoluminescence properties of semiconductor quantum nanostructures. Recent advances and observations as reported in the literature will be emphasized throughout the semester. Prerequisites: Chem 461 and Chem 465, or permission of the instructor. While the course is steered to graduate students in the Chemistry Department, Chemistry undergraduate students, graduate or undergraduate students in Physics, Electrical & Systems Engineering, Energy, Environmental & Chemical Engineering, Mechanical Engineering & Materials Science may also find this course valuable.

Chem 571 Quantum Chemistry
This course covers the development and application of quantum mechanics as applied to molecular structure and properties. Material to be discussed will include the fundamentals of quantum mechanics; representations; matrix formalisms; applications to model systems; perturbation theory; variational methods; many-electron wavefunctions; Hartree-Fock theory and post-Hartree Fock methods; density functional theory; additional topics and applications. Prereq: Chem 401.

CHEM 578, Introduction to Nuclear Magnetic Resonance
A course dealing with the quantum and classical description of the nuclear magnetic resonance of an isolated system of two spin-1/2 nuclei. The design of pulsed NMR spectrometers and the Fourier analysis of time-dependent observable magnetization in 1 and 2 dimensions are treated in detail, NMR relaxation in liquids and solids is included phenomenologically. Prerequisite: Physical Chemistry or permission of the instructor.

EECE 534 Environmental Nanochemistry
This course involves the study of nanochemistry at various environmental interfaces, focusing on colloid, nanoparticle, and surface reactions. The course would also (1) examine the thermodynamics and kinetics of nanoscale reactions at solid-water interfaces in the presence of inorganic or organic compounds and microorganisms; (2) investigate how nanoscale interfacial reactions affect the fate and transport of contaminants; (3) introduce multidisciplinary techniques for obtaining fundamental information about the structure and reactivity of nanoparticles and thin films, and the speciation or chemical form of environmental pollutants at the molecular scale; (4) explore connections between environmental nanochemistry and environmental kinetic analysis at larger scales. This course will help students attain a better understanding of the relationship between nanoscience/technology and the environment-specifically how nanoscience could potentially lead to better water treatments, more effective contaminated-site remediation, or new energy alternatives.

EECE 576 Chemical Kinetics and Catalysis
This course reflects the fast, contemporary progress being made in decoding kinetic complexity of chemical reactions, in particular heterogeneous catalytic reactions. New approaches to understanding relationships between observed kinetic behaviour and reaction mechanism will be explained. Present theoretical and methodological knowledge will be illustrated by many examples taken from heterogeneous catalysis (complete and partial oxidation), combustion and enzyme processes. Prerequisite: senior or graduate student standing, or permission of instructor.

ESE 531 Nano and Micro Photonics  
This course focuses on theory, design, fabrication and application of photonic materials and micro/nano photonic devices. Interaction of light and matter, propagation of light in waveguide, nonlinear optical effect and optical properties of nano/micro structure, the device principles of silicon-based waveguide, filter, photodetector, modulator and laser devices. Prerequisite: ESE 330.

ESE 536 Introduction to Quantum Optics
This course covers the following topics: quantum mechanics for quantum optics, radiative transitions in atoms, lasers, photon statistics (photon counting, Sub-/Super-Poissionian photon statistics, bunching, anti-bunching, theory of photodetection, shot noise), entanglement, squeezed light, atom-photon interactions, cold atoms, atoms in cavities. If time permits, the following topics will be selectively covered: quantum computing, quantum cryptography, and teleportation. Pre-requisites: ESE 330 and Physics 217 or Physics 421

MEMS 5506 Experimental Methods in Solid Mechanics
Current experimental methods to measure mechanical properties of materials will be covered. Lectures include theoretical principles, measurement considerations, data acquisition and analysis techniques. Lectures are complemented by laboratory sections using research equipment such as biaxial testing machines, pressure myographs, indentation devices for different scales, and viscometers.

MEMS 5603 Materials Characterization Techniques I
An introduction to the basic theory and instrumentation used in transmission electron, scanning electron, and optical microscopy. Practical laboratory experience in equipment operations, experimental procedures, and material characterization.

MEMS 5605 Mechanical Behavior of Composites
Analysis and mechanics of composite materials. Topics include micromechanics, laminated plate theory, hydrothermal behavior, creep, strength, failure modes, fracture toughness, fatigue, structural response, mechanics of processing, nondestructive evaluation, and test methods. Prerequisite: Graduate standing or permission of the instructor.

MEMS 5611 Principles and Methods of Micro and Nanofabrication
A hands-on introduction to the fundamentals of micro- and nano-fabrication processes with emphasis on cleanroom practices. The physical principles of oxidation, optical lithography, thin film deposition, etching and metrology methods will be discussed, demonstrated and practiced. Students will be trained in cleanroom concepts and safety protocols. Sequential micro-fabrication processes involved in the manufacture of microelectronic and photonic devices will be shown. Training in imaging and characterization of micro- and nano-structures will be provided. Prereqs: graduate or senior standing or permission of the instructor

MEMS 5612 Atomistic Modeling of Materials
This course will provide a hands-on experience using atomic scale computational methods to model, understand and predict the properties of real materials. It will cover modeling using classical force-fields, quantum-mechanical electronic structure methods such as density functional theory, molecular dynamics simulations, and Monte Carlo methods. The basic background of these methods along with examples of their use for calculating properties of real materials will be covered in the lectures. Atomistic materials modeling codes will be used to calculate various material properties. Prerequisites: MEMS 3610 or equivalent or permission of instructor.

Physics 529 Statistical Mechanics
Gibbs' formalism of statistical mechanics and applications to thermodynamics. Quantum statistical mechanics and degenerate matter. General theory of equilibrium including phase transitions and critical phenomena. Interacting particles including non-ideal gases, ferromagnetism, and superconductivity. Transport theory, irreversible processes.

Physics 549 Solid State Physics I
Quantum theory of phonons in solids, thermodynamical properties, band theory of solids, free-electron and tight-binding approaches to electronic structure.