The following courses have been pre-approved as IMSE electives and are being offered for the Spring 2022 semester: 

Complete list of pre-approved IMSE PhD electives (pdf)

IMSE 510 Special Topics in Biomaterials: Structures and Properties of Endogenous Biological Materials
The class will focus on the foundations of endogenous biological materials found in living organisms. The topics will cover structures and properties of common building blocks (i.e., proteins, polysaccharides, etc.), microstructures (i.e., organelles, cells), and biological tissues that are responsible for many important functions in living organisms. The topics will also cover established and emerging methods to investigate biological materials and restore their functions. Lectures will be contributed by experts in the relevant fields.

Chem 452 Synthetic Polymer Chemistry
A course that describes various methods for the synthesis and characterization of polymers. Copolymers, control of architecture, polymer reactivity, polymer properties, structure/property relationships, and applications of polymers will be discussed. Current topics of interest from the recent literature will also be covered. Prerequisite: Chem 252 or permission of the instructor.

Chem 462 Synthetic Polymer Chemistry Laboratory
CHEM 462 is an upper-level undergraduate and graduate level laboratory course that complements CHEM 452 Synthetic Polymer Chemistry. This twice-a-week lab provides hands-on training in the design, synthesis, and characterization of polymers and polymeric materials through four standard experiments (each one week) and one independent project (over five to six weeks). The independent project involves using an article from the literature as the basis for developing a short proposal. At the end of the course, students give oral presentations of their proposals, which are reviewed by their classmates. Pre- or Co-requisite: CHEM 452 Synthetic Polymer Chemistry or permission of the instructor.

Chem 542 Special Topics in Inorganic The Chemistry of Energy Storage
This course focuses on an important current topic in inorganic chemistry. Open to undergraduates with permission of the instructor. Chemistry 461 recommended.

EECE 574 Electrochemical Engineering
This course will teach the fundamentals of electrochemistry and the application of the same for analyzing various electrochemical energy sources/devices. The theoretical frameworks of current-potential distributions, electrode kinetics, porous electrode and concentrated solution theory will be presented in the context of modeling, simulation and analysis of electrochemical systems. Applications to batteries, fuel cells, capacitors, copper deposition will be explored. Pre/co-requisites: EECE 501-502 (or equivalent), or permission of instructor. (Prior to FL2015, this course was numbered: E33 589.)

EECE 576 Chemical Kinetics and Catalysis
This course reflects the fast, contemporary progress being made in decoding kinetic complexity of chemical reactions, in particular heterogeneous catalytic reactions. New approaches to understanding relationships between observed kinetic behavior and reaction mechanism will be explained. Present theoretical and methodological knowledge will be illustrated by many examples taken from heterogeneous catalysis (complete and partial oxidation), combustion and enzyme processes. Prerequisite: senior or graduate student standing, or permission of instructor.

MEMS 5603 Materials Characterization Techniques I
An introduction to the basic theory and instrumentation used in transmission electron, scanning electron, and optical microscopy. Practical laboratory experience in equipment operations, experimental procedures, and material characterization.

MEMS 5605 Mechanical Behavior of Composites
The course covers topics in multicomponent polymer systems (polymer blends and polymer composites) such as: phase separation and miscibility of polymer blends, surfaces and interfaces in composites, microstructure and mechanical behavior, rubber toughened plastics, thermoplastic elastomers, block copolymers, fiber reinforced and laminated composites, techniques of polymer processing with an emphasis on composites processing, melt processing methods such as injection molding and extrusion, solution processing of thin films, selection of suitable processing methods and materials selection criteria for specific applications. Advanced topics include: nanocomposites such as polymer/CNT composites, bioinspired nanocomposites, and current research challenges. Prerequisite: MEMS 3610 or equivalent or permission of instructor.

MEMS 5606 Soft Nanomaterials
Soft nanomaterials, which range from self-assembled monolayers (SAMs) to complex 3D polymer structures, are gaining increased attention owing to their broad range applications. The course intends to introduce the fundamental aspects of nanotechnology pertained to soft matter. Various aspects related to the design, fabrication, characterization and application of soft nanomaterials will be discussed. Topics that will be covered include but not limited to SAMs, polymer brushes, Layer-by-Layer assembly, responsive polymers structures (films, capsules), polymer nanocomposites, biomolecules as nanomaterials and soft lithography.

MEMS 5616 Defects in Materials
Defects in materials play a critical role controlling properties of solids which make them interesting and necessary to study. The objective of this course is to provide a broad overview of defects in crystalline solids, their effect on properties, and methods of characterizing them. Course topics include crystal structures, defect classification, defect interactions, role of defects in controlling properties of materials, and characterization techniques.

Physics 472 Solid State Physics (IMSE Core Option)
Crystal structures, binding energies, thermal properties, dielectrics, magnetism, free electron theory of metals, band theory, semiconductors, defects in solids. Prerequisite: Phys 471.

Physics 529 Statistical Mechanics
Gibbs' formalism of statistical mechanics and applications to thermodynamics. Quantum statistical mechanics and degenerate matter. General theory of equilibrium including phase transitions and critical phenomena. Interacting particles including non-ideal gases, ferromagnetism, and superconductivity. Transport theory, irreversible processes.

Physics 537 Kinetics of Materials (IMSE Core Required)
A general discussion of phase formation and phase transformation in solids and liquids. Topics include equilibrium and nonequilibrium thermodynamics, equilibrium and metastable phase diagrams, nucleation and growth, spinodal transformations, diffusion and interface limited processes, shear type transformations and order/disorder transformations. Prerequisite: A background in thermodynamics, statistical mechanics, and solid state physics at the senior undergraduate level.

Physics 549 Solid State Physics I
Quantum theory of phonons in solids, thermodynamical properties, band theory of solids, free-electron and tight-binding approaches to electronic structure